SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset

Virginia Commonwealth University (VCU)


SimBEV is a randomized synthetic data generation tool based on CARLA that is extensively configurable and scalable, supports a wide array of sensors, incorporates information from multiple sources to capture accurate BEV ground truth, and enables a variety of perception tasks including BEV segmentation and 3D object detection. SimBEV was used to create the SimBEV dataset, a large collection of annotated perception data from diverse driving scenarios.

How SimBEV Works

SimBEV logic flow.

SimBEV's logic flow when creating a new dataset.

The SimBEV Dataset

The SimBEV dataset is a collection of 320 scenes spread across 11 CARLA maps and contains data from all supported sensors. With each scene lasting 16 seconds at a frame rate of 20 Hz, the SimBEV dataset contains 102,400 annotated frames, 8,315,935 3D object bounding boxes (3,792,499 of which are valid (i.e., have at least one lidar or radar point inside)), and 2,793,491,357 BEV ground truth labels. You can download the dataset from here, or use the links below for individual parts. See here for more information about the dataset.

Part Size Download
configs 378 KB
infos 21 MB
logs 24.3 GB
ground-truth/det 1.93 GB
ground-truth/seg 172.8 MB
ground-truth/seg_viz 1.23 GB
sweeps/RGB-CAM_FRONT_LEFT 34.12 GB
sweeps/RGB-CAM_FRONT 33.6 GB
sweeps/RGB-CAM_FRONT_RIGHT 34.98 GB
sweeps/RGB-CAM_BACK_RIGHT 35.42 GB
sweeps/RGB-CAM_BACK 34.43 GB
sweeps/RGB-CAM_BACK_LEFT 34.69 GB
sweeps/SEG-CAM_FRONT_LEFT 4.52 GB
sweeps/SEG-CAM_FRONT 4.91 GB
sweeps/SEG-CAM_FRONT_RIGHT 4.26 GB
sweeps/SEG-CAM_BACK_RIGHT 3.76 GB
sweeps/SEG-CAM_BACK 4.71 GB
sweeps/SEG-CAM_BACK_LEFT 4.02 GB
sweeps/IST-CAM_FRONT_LEFT 4.05 GB
sweeps/IST-CAM_FRONT 4.87 GB
sweeps/IST-CAM_FRONT_RIGHT 3.68 GB
sweeps/IST-CAM_BACK_RIGHT 3.09 GB
sweeps/IST-CAM_BACK 4.67 GB
sweeps/IST-CAM_BACK_LEFT 3.49 GB
sweeps/DPT-CAM_FRONT_LEFT 115.4 GB
sweeps/DPT-CAM_FRONT 99.72 GB
sweeps/DPT-CAM_FRONT_RIGHT 121.27 GB
sweeps/DPT-CAM_BACK_RIGHT 113.1 GB
sweeps/DPT-CAM_BACK 100.94 GB
sweeps/DPT-CAM_BACK_LEFT 110.28 GB
sweeps/FLW-CAM_FRONT_LEFT 14.96 GB
sweeps/FLW-CAM_FRONT 12.69 GB
sweeps/FLW-CAM_FRONT_RIGHT 12.8 GB
sweeps/FLW-CAM_BACK_RIGHT 12.44 GB
sweeps/FLW-CAM_BACK 13.71 GB
sweeps/FLW-CAM_BACK_LEFT 14.12 GB
sweeps/RAD_LEFT 2.69 GB
sweeps/RAD_FRONT 2.58 GB
sweeps/RAD_RIGHT 2.69 GB
sweeps/RAD_BACK 2.57 GB
sweeps/LIDAR 200.42 GB
sweeps/SEG-LIDAR 287.39 GB
sweeps/GNSS 29.8 MB
sweeps/IMU 31.4 MB

Unless specifically labeled otherwise, the SimBEV Dataset is provided to you under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (“CC BY-NC-SA 4.0”). The CC BY-NC-SA 4.0 may be accessed here. When you download or use the SimBEV Dataset from our websites or elsewhere, you are agreeing to comply with the terms of CC BY-NC-SA 4.0 as applicable.

Benchmarks

BEV segmentation benchmarks

BEV segmentation IoUs (in %) by class and IoU threshold for different models evaluated on the SimBEV dataset test set.

3D object detection benchmarks

3D object detection results for different models evaluated on the SimBEV dataset test set.

BibTeX

@article{mehr2025simbev,
  title={SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset},
  author={Mehr, Goodarz and Eskandarian, Azim},
  journal={arXiv preprint arXiv:2502.01894},
  year={2025}
}